Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Getting Started
  2. Supervisely annotation format

Video Annotation

PreviousImage AnnotationNextPoint Clouds Annotation

Last updated 1 year ago

Was this helpful?

For each video file, we store the annotations in a separate JSON file named image_name.image_format.json with the following file structure:

Example:

{
    "size": {
        "height": 1080,
        "width": 1920
    },
    "description": "",
    "key": "c8168b43ae1b45c38930f456df9d0f2b",
    "tags": [],
    "objects": [
        {
            "key": "198f727d40c749eebcacc4aed299b39a",
            "classTitle": "rect",
            "tags": [],
            "labelerLogin": "alexxx",
            "updatedAt": "2020-08-23T12:06:11.963Z",
            "createdAt": "2020-08-23T12:06:11.963Z"
        }
    ],
    "frames": [
        {
            "index": 0,
            "figures": [
                {
                    "key": "65f21690780e43b49863c3cbd07eab3a",
                    "objectKey": "198f727d40c749eebcacc4aed299b39a",
                    "geometryType": "rectangle",
                    "geometry": {
                        "points": {
                            "exterior": [
                                [
                                    266,
                                    420
                                ],
                                [
                                    847,
                                    845
                                ]
                            ],
                            "interior": []
                        }
                    },
                    "labelerLogin": "alexxx",
                    "updatedAt": "2020-08-23T12:06:13.544Z",
                    "createdAt": "2020-08-23T12:06:13.544Z"
                }
            ]
        }
    ],
    "framesCount": 375
}

Fields definitions:

  • size - string - is equal to image(frame) size

  • description - string - (optional) - this field is used to store the text we want to assign to the video. In the labeling interface it corresponds to the 'data' filed.

  • tags - list of strings that will be interpreted as video tags

  • key - string, unique key for a given video (used in key_id_map.json to get the video ID)

  • objects - list of objects that may be present on the video

  • frames - list of frames of which the video consists. List contains only frames with an object from the 'objects' field

    • index - integer - number of the current frame

    • figures - integer - list of objects which the current frame contains

  • framesCount - integer - total number of frames in the video

  • objectKey - string - unique key for a given object (used in key_id_map.json)

  • labelerLogin - string - the name of a user who created the current figure

  • geometryType - "cuboid_3d" - class shape

  • geometry - a dictionary containing indicators of location, rotation and dimensions of cuboids

Fields definitions for objects field:

  • key - string, a unique key for the given object (used in key_id_map.json to get the object ID)

  • classTitle - string - the title of a class. It's used to identify the class shape from the meta.json file

  • tags - list of strings that will be interpreted as object tags

  • labelerLogin - string - the name of the user that added this figure to the project

Fields description for figures field:

  • key - string, a unique key for the given figure (used in key_id_map.json to get the figure ID)

  • objectKey - string, a unique key for the given object (used in key_id_map.json to get the object ID).

  • geometryType - "rectangle" -class shape

  • geometry - geometry of the object

  • classTitle - string - the title of a class. It's used to identify the class shape from the meta.json file

  • labelerLogin - string - the name of the user that added this figure to the current frame

Key id map file

Key_id_map.json file is optional. It is created when annotating the video inside Supervisely interface and sets the correspondence between the unique identifiers of the video, object and the frame on which the object is located. If you annotate manually, you do not need to create this file. This will not affect the work being done.

JSON format of key_id_map.json:

{
    "tags": {},
    "objects": {
        "198f727d40c749eebcacc4aed299b39a": 20520
    },
    "figures": {
        "65f21690780e43b49863c3cbd07eab3a": 503130811
    },
    "videos": {
        "c8168b43ae1b45c38930f456df9d0f2b": 157876296
    }
}

Fields definitions:

  • objects - dictionary, where the key is a unique string, generated inside Supervisely environment to set correspondence of current object in annotation, and values are unique integer ID corresponding to the current object

  • figures - dictionary, where the key is a unique string, generated inside Supervisely environment to set correspondence of object on current frame in annotation, and values are unique integer ID corresponding to the current frame

  • videos - dictionary, where the key is unique string, generated inside Supervisely environment to set correspondence of video in annotation, and value is a unique integer ID corresponding to the current video

  • tags - dictionary, where the keys are unique strings, generated inside Supervisely environment to set correspondence of tag on current frame in annotation, and values are a unique integer ID corresponding to the current tag

🎉
cuboid_3d example