Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • How to debug this tutorial
  • Part 1. Create labels with binding and upload them to server
  • Import libraries
  • Init API client
  • Create project
  • Define annotation classes
  • Upload demo image to server
  • Read masks and create sly.Annotation
  • Create bindings
  • Upload annotation with binding to server
  • Part 2: Work with existing binding
  • Download annotation
  • Access to binding keys
  • Access all binding groups in annotation
  • Discard binding

Was this helpful?

Edit on GitHub
  1. Advanced user guide

Objects binding

This guide explains how to bind (group) objects on images

PreviousCompareAnnotationsNextAutomate with Python SDK & API

Last updated 2 years ago

Was this helpful?

Introduction

For some labeling scenarios, it is needed to group objects. Let's consider the case when you need to label object parts and then group them together. Such binding will help you distinguish parts of different objects. In this tutorial, you will learn how to programmatically group objects together (binding) and how to work with existing bindings.

Everything you need to reproduce : source code and demo data.

In this tutorial, we will create binding for the labeled parts of a single car:

Imput image and masks

This tutorial consists of two parts:

How to debug this tutorial

git clone https://github.com/supervisely-ecosystem/tutorial-object-binding
cd tutorial-object-binding
./create_venv.sh

Step 3. Open repository directory in Visual Studio Code.

code -r .

Step 4. change ✅ workspace ID ✅ in local.env file by copying the ID from the context menu of the workspace. A new project with demo data will be created in the workspace you define:

WORKSPACE_ID=619 # ⬅️ change value

Step 5. Start debugging src/main.py

Part 1. Create labels with binding and upload them to server

Import libraries

import os
from typing import List
from dotenv import load_dotenv
import cv2
import uuid
import supervisely as sly

Init API client

Init API for communicating with Supervisely Instance. First, we load environment variables with credentials and workspace ID:

if sly.is_development():
    load_dotenv("local.env")
    load_dotenv(os.path.expanduser("~/supervisely.env"))
api = sly.Api()

Create project

Create empty project with name "tutorial-bindings" with one dataset "dataset-01" in your workspace on server. If the project with the same name exists in your dataset, it will be automatically renamed (tutorial-bindings_001, tutorial-bindings_002, etc ...) to avoid name collisions.

workspace_id = sly.env.workspace_id()

project = api.project.create(workspace_id, name="tutorial-bindings", change_name_if_conflict=True)
dataset = api.dataset.create(project.id, name="dataset-01")
print(f"Open project in browser: {project.url}")

Define annotation classes

Let's define annotation classes and upload them to our new project on server:

class_car = sly.ObjClass(name="car", geometry_type=sly.Bitmap, color=[255, 0, 255])
meta = sly.ProjectMeta(obj_classes=[class_car])
api.project.update_meta(project.id, meta)

Upload demo image to server

image_path = "images/image.jpg"
image_name = sly.fs.get_file_name_with_ext(image_path)
image_info = api.image.upload_path(dataset.id, image_name, image_path)
print(f"Image has been successfully uploaded: id={image_info.id}")

# will be needed later for creating annotation
height, width = cv2.imread(image_path).shape[0:2]

Read masks and create sly.Annotation

More details about how to create labels can be found in this tutorial.

# create Supervisely annotation from masks images
labels_masks: List[sly.Label] = []
for mask_path in [
    "images/car_masks/car_01.png",
    "images/car_masks/car_02.png",
    "images/car_masks/car_03.png",
]:
    # read only first channel of the black-and-white image
    image_black_and_white = cv2.imread(mask_path)[:, :, 0]

    # supports masks with values (0, 1) or (0, 255) or (False, True)
    mask = sly.Bitmap(image_black_and_white)
    label = sly.Label(geometry=mask, obj_class=class_car)
    labels_masks.append(label)

ann = sly.Annotation(img_size=[height, width], labels=labels_masks)

Create bindings

We know that all three masks are parts of a single car object. Let's bind them together. It is important to notice that any unique string can be label's binding_key.

key = uuid.uuid4().hex  # key can be any unique string
for label in ann.labels:
    label.binding_key = key

Upload annotation with binding to server

api.annotation.upload_ann(image_info.id, ann)

As a result, we will have three objects of class car grouped together:

Part 2: Work with existing binding

Download annotation

project_meta = sly.ProjectMeta.from_json(api.project.get_meta(project.id))

ann_json = api.annotation.download_json(image_info.id)
ann = sly.Annotation.from_json(ann_json, meta)

Access to binding keys

If binding_key is None then the label does not belong to any group.

print("Labels bindings:")
for label in ann.labels:
    print(label.binding_key)

The output will be the following:

Labels bindings:
62245779
62245779
62245779

Access all binding groups in annotation

groups = ann.get_bindings()
for i, (binding_key, labels) in enumerate(groups.items()):
    if binding_key is not None:
        print(f"Group # {i} [key={binding_key}] has {len(labels)} labels")
    else:
        # Binding key None defines all labels that do not belong to any binding group
        print(f"{len(labels)} labels do not have binding")

Discard binding

Let's remove bindings on objects of class car:

for label in ann.labels:
    if label.obj_class.name == "car":
        label.binding_key = None

Or you can discard binding for all labels in annotation:

ann.discard_bindings()

Let's upload updated annotation (without bindings) back to the server:

api.annotation.upload_ann(image_info.id, ann)

****. Create labels with binding and upload them to Supervisely server.

****. Methods needed to work with existing bindings.

Step 1. Prepare ~/supervisely.env file with credentials.

Step 2. Clone with source code and demo data and create .

Copy workspace ID from context menu
Result annotation with binding

Let's download existing annotation (we created it in ) from server.

😎
repository
Virtual Environment
Part 1
Part 2
part 1
this tutorial is on GitHub
Learn more here.