Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Structure
  • Full image annotation example with objects and tags
  • How the Label Group Is Described in Project Files

Was this helpful?

Edit on GitHub
  1. Getting Started
  2. Supervisely annotation format

Image Annotation

PreviousTagsNextVideo Annotation

Last updated 3 months ago

Was this helpful?

Structure

For each image, we store the annotations in a separate JSON file named image_name.image_format.json with the following file structure:

{
    "description": "food",
    "name": "tomatoes-eggs-dish.jpg",
    "size": {
        "width": 2100,
        "height": 1500
    },
    "tags": [],
    "objects": []
}

Fields definitions:

  • name - string - image name

  • description - string - (optional) - This field is used to store the text we want to assign to the image. In the labeling interface it corresponds to the 'data' filed.

  • size - stores image size. Mostly, it is used to get the image size without the actual image reading to speed up some data processing steps.

    • width - image width in pixels

    • height - image height in pixels

  • tags - list of strings that will be interpreted as image

  • objects - list of which can be of different types (point, rectangle, polygon, line, bitmap, etc.)

Full image annotation example with objects and tags

Example:

{
    "description": "",
    "tags": [
        {
            "id": 86458971,
            "tagId": 28283797,
            "name": "like",
            "value": null,
            "labelerLogin": "alexxx",
            "createdAt": "2020-08-26T09:12:51.155Z",
            "updatedAt": "2020-08-26T09:12:51.155Z"
        },
        {
            "id": 86458968,
            "tagId": 28283798,
            "name": "situated",
            "value": "outside",
            "labelerLogin": "alexxx",
            "createdAt": "2020-08-26T09:07:26.408Z",
            "updatedAt": "2020-08-26T09:07:26.408Z"
        }
    ],
    "size": {
        "height": 952,
        "width": 1200
    },
    "objects": [
        {
            "id": 497521359,
            "classId": 1661571,
            "description": "",
            "geometryType": "bitmap",
            "labelerLogin": "alexxx",
            "createdAt": "2020-08-07T11:09:51.054Z",
            "updatedAt": "2020-08-07T11:09:51.054Z",
            "tags": [],
            "classTitle": "person",
            "bitmap": {
                "data": "eJwBgQd++IlQTkcNChoKAAAADUlIRF",
                "origin": [
                    535,
                    66
                ]
            }
        },
        {
            "id": 497521358,
            "classId": 1661574,
            "description": "",
            "geometryType": "rectangle",
            "labelerLogin": "alexxx",
            "createdAt": "2020-08-07T11:09:51.054Z",
            "updatedAt": "2020-08-07T11:09:51.054Z",
            "tags": [],
            "classTitle": "bike",
            "points": {
                "exterior": [
                    [
                        0,
                        236
                    ],
                    [
                        582,
                        872
                    ]
                ],
                "interior": []
            }
        }
    ]
}

How the Label Group Is Described in Project Files

  1. Project Meta

    In the tags section of project meta.json, you must include a tag named @label-group-id with the following properties:

    • name: "@label-group-id"

    • value_type: "any_string" (allows flexible naming for groups)

    • applicable_type: "objectsOnly" (ensures the tag is only assigned to labeled objects)

    This tag is essential for defining and managing label groups within the project, allowing grouped labels to be linked and organized effectively.

    {        
        "tags": [
            {
                "name": "@label-group-id",
                "value_type": "any_string",
                "color": "#FF0000",
                "id": 222,
                "hotkey": "",
                "applicable_type": "objectsOnly",
                "classes": [],
                "target_type": "all"
            }
        ],
        ... // more elements here
    }
  2. Image Annotation

    To add an object to a label group, you must assign the @label-group-id tag with the corresponding group name as its value.

    • This ensures that all objects with the same tag value are recognized as part of the same group.

    • Grouped labels will be visually linked and managed together in the annotation interface.

    "objects": [
            {
                "classTitle": "Head Light",
                "description": "",
                "tags": [
                    {
                        "name": "@label-group-id",
                        "value": "head-light",
                        "labelerLogin": "supervisely",
                        ... // more elements here
                    }
                ],
                ... // more elements here
            }
        ]
🎉
tags
objects on the image
image example
Label Group