Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Table of contents
  • Step 1 — Clone Lemons (Annotated) project from Ecosystem
  • Step 2 — Environments files
  • Step 3 — Python script && Results
  • Step 4 — Complete SDK documentation

Was this helpful?

Edit on GitHub
  1. App development
  2. Advanced
  3. Tutorial - App Engine v1
  4. Chapter 1 Headless

Part 4 — SDK Preview [Lemons counter app]

In this part, we will load a project from the Ecosystem and count the number of annotated lemons.

PreviousPart 3 — Site Packages [Customize your app]NextPart 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]

Last updated 2 years ago

Was this helpful?

Table of contents

Step 1 — Clone Lemons (Annotated) project from Ecosystem

Clone project from Ecosystem to your Workspace

Step 2 — Environments files

For our convenience, let's make two files in application directory: debug.env and secret_debug.env

We will add constants to these files to access the Supervisely SDK

debug.env

PYTHONUNBUFFERED=1

modal.state.slyProjectId=6157

context.teamId=238
context.workspaceId=333

LOG_LEVEL="debug"
# This file is used for example! After filling in your personal data, keep the file secret!

SERVER_ADDRESS="https://app.supervise.ly/"
API_TOKEN=""  # get it in https://app.supervise.ly/user/settings/tokens
AGENT_TOKEN= # get it in https://app.supervise.ly/nodes/list

Step 3 — Python script && Results

Let's write a simple script that:

  1. downloads the project

  2. retrieves annotations

  3. counts the number of lemons

Here is the completed code:

src/main.py

import supervisely_lib as sly
import os
import json
from dotenv import load_dotenv  # pip install python-dotenv
								# don't forget to add to requirements.txt!

# Loading env files
load_dotenv("../debug.env")
load_dotenv("../secret_debug.env", override=True)

# Extracting variables
address = os.environ['SERVER_ADDRESS']
token = os.environ['API_TOKEN']

team_id = int(os.environ['context.teamId'])
workspace_id = int(os.environ['context.workspaceId'])
project_id = int(os.environ['modal.state.slyProjectId'])

# Initialize API object
api = sly.Api(address, token)

# Downloading Project
project_local_dir = './project_local_dir/'

if sly.fs.dir_exists(project_local_dir):
    sly.fs.clean_dir(project_local_dir)  # clean dir before download

sly.download_project(api=api,
                     project_id=project_id,
                     dest_dir=project_local_dir)

# Getting project meta (Base project information — Labels, Shapes, Colors etc.)
project_meta_json = api.project.get_meta(project_id)  # we could also open a local file ./project_local_dir/meta.json
project_meta = sly.ProjectMeta.from_json(project_meta_json)

# Getting list of datasets folders in project
project_datasets = [potential_dir for potential_dir in os.listdir(project_local_dir)
                    if os.path.isdir(os.path.join(project_local_dir, potential_dir))]


# Getting list of Annotations in project
images_annotations = []

for current_dataset in project_datasets:  # for each dataset in project
    dataset_annotations_dir_path = os.path.join(project_local_dir, current_dataset, 'ann')
    annotation_filenames = os.listdir(dataset_annotations_dir_path)

    for annotation_filename in annotation_filenames:  # for each annotation file in dataset
        with open(os.path.join(dataset_annotations_dir_path, annotation_filename), 'r') as ann_file:
            image_annotations_json = json.load(ann_file)

        image_annotations = sly.Annotation.from_json(image_annotations_json, project_meta)
        images_annotations.append(image_annotations)  # store annotation


# Let's count lemons!

count = 0
class_of_interest = 'lemon'

for image_annotation in images_annotations:
    for label in image_annotation.labels:
        if label.obj_class.name == class_of_interest:
            count += 1

print(f'{project_id=} contains {count} {class_of_interest}(-s)')

Results:

project_id=6157 contains 8 lemon(-s)

Step 4 — Complete SDK documentation

You can find more information here:

secret_debug.env ( keep the file in secret)

🔥
Learn SDK Basics with IPython Notebooks
Complete Python SDK
Lemons (Annotated)
Clone Lemons (Annotated) project from Ecosystem
Environments files
Python script && Results
Complete SDK documentation
warning
Add .env files