Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • title
  • series
  • stroke_width
  • data_labels
  • height
  • type
  • Methods and attributes
  • Mini app example
  • Import libraries
  • Init API client
  • Initialize PieChart widget
  • Create GUI with buttons
  • Create app layout
  • Create an app using the layout
  • Using @click event
  • Add buttons logic: Add, Set, Remove

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Charts and Plots

PieChart

PreviousTreemapChartNextCompare Data

Last updated 1 year ago

Was this helpful?

Introduction

PieChart widget in Supervisely is a widget used for displaying a pie chart. It allows users to visualize data for comparison distribution of different objects. The PieChart widget allows easily visualize data to determine the distribution of objects in comparison to each other.

Click slice demo
Click side value'

Function signature

PieChart(
    title="Simple Pie",
    series=[
        {"name": "Team A", "data": 44},
        {"name": "Team B", "data": 55},
        {"name": "Team C", "data": 33},
    ],
)

Parameters

Parameters
Type
Description

title

str

PieChart title

series

List[Dict[str, Union[int,float]]]

PieChart slices data

stroke_width

str

Gap between slices

data_labels

bool

Show value on slices

height

Union[int, str]

PieChart height size

type

Literal["pie", "donut"]

PieChart type. Can be pie or donut

title

Determines PieChart title.

type: str

series

PieChart slices data. The series should be a list of dicts with keys name and data. The name key should contain the name of the slice and the data key should contain the value of the slice.

type: List[Dict[str, Union[int,float]]]

default value: []

series=[
    {"name": "Team A", "data": 44},
    {"name": "Team B", "data": 55},
    {"name": "Team C", "data": 33},
]

PieChart(
    title="Simple Pie",
    series=series,
)

stroke_width

Determines the gap between slices on PieChart. Set to 0 to remove the gap.

type: int

default value: 2

    title="Simple Pie",
    series=[
        {"name": "Team A", "data": 44},
        {"name": "Team B", "data": 55},
        {"name": "Team C", "data": 33},
    ],
    stroke_width=0,

data_labels

If True show values on PieChart slices. If False hide values on PieChart slices.

type: bool

default value: False

    title="Simple Pie",
    series=[
        {"name": "Team A", "data": 44},
        {"name": "Team B", "data": 55},
        {"name": "Team C", "data": 33},
    ],
    data_labels=True,

height

Determines the size of PieChart.

type: Union[int, str]

default value: 350

    title="Simple Pie",
    series=[
        {"name": "Team A", "data": 44},
        {"name": "Team B", "data": 55},
        {"name": "Team C", "data": 33},
    ],
    height=500,

type

Determines the type of PieChart. Can be pie or donut.

type: Literal["pie", "donut"]

default value: pie

    title="Simple Pie",
    series=[
        {"name": "Team A", "data": 44},
        {"name": "Team B", "data": 55},
        {"name": "Team C", "data": 33},
    ],
    type="donut",

Methods and attributes

Methods and attributes
Description

add_series(names: List[str], values: List[Union[int, float]])

Adds a new series to the PieChart widget.

set_series(names: List[str], values: List[Union[int, float]])

Sets a series to the PieChart widget, removing all previous series.

get_series(index: int))

Returns a series from the PieChart widget by index.

delete_series(index: int)

Deletes a series from the PieChart widget by index.

get_clicked_datapoint()

Returns the clicked datapoint from the PieChart widget as NamedTuple.

Mini app example

You can find this example in our GitHub repository:

Import libraries

import os

import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import (
    Button,
    Card,
    Container,
    Flexbox,
    Input,
    InputNumber,
    PieChart,
    Text,
)

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Initialize PieChart widget

# Prepare names and values for series
series = [
    {"name": "Team A", "data": 44},
    {"name": "Team B", "data": 55},
    {"name": "Team C", "data": 13},
    {"name": "Team D", "data": 43},
    {"name": "Team E", "data": 22},
]

pie_chart = PieChart(
    title="Simple Pie",
    series=series,
    stroke_width=1,
    data_labels=True,
    height=350,
    type="pie",
)

Create GUI with buttons

# Create Text widget for displaying clicked datapoint info and place it in the Container widget with PieChart.
text = Text("Click on the slice to see it's value", status="info")
container_chart = Container(widgets=[pie_chart, text])

# Create Input widget for slice name, InputNumber widget for slice value and Buttons for managing slices.
input_name = Input(value="Team F", maxlength=10)
input_value = InputNumber(value=10)
button_add = Button("Add slice")
button_set = Button("Set slice")
button_remove = Button("Delete selected slice", "danger")

# Disable remove button until slice is selected.
button_remove.disable()

# Create Flexbox widget for buttons and place it in the Container widget with Input widgets.
buttons_flex = Flexbox(widgets=[button_add, button_set, button_remove])
container_add = Container(widgets=[input_name, input_value, buttons_flex])

# Place both Container widgets in the main Container widget. We will pass it to the app layout later.
main_container = Container(widgets=[container_chart, container_add])

Create app layout

Prepare a layout for the app using Card widget with the content parameter and place widget that we've just created in the Container widget.

# Creating Card widget, which will contain the Transfer widget and the Text widget.
card = Card(title="Pie Chart", content=main_container)

# Creating the application layout.
layout = card

Create an app using the layout

Create an app object with the layout parameter.

# Initialize the application.
app = sly.Application(layout=layout)

Using @click event

@pie_chart.click
def show_selection(datapoint: PieChart.ClickedDataPoint):
    # Datapoint is a namedtuple with fields: series_index, data_index, data
    data_name = datapoint.data["name"]
    data_value = datapoint.data["value"]
    data_index = datapoint.data_index

    # Update text widget with selected slice info.
    text.set(f"Selected slice: {data_name}, Value: {data_value}, Index: {data_index}", "info")

    # Enable remove button when slice is selected.
    button_remove.enable()

Add buttons logic: Add, Set, Remove

@button_add.click
def add_slice():
    name = input_name.get_value()
    value = input_value.get_value()
    pie_chart.add_series(names=[name], values=[value])


@button_set.click
def set_slice():
    name = input_name.get_value()
    value = input_value.get_value()
    pie_chart.set_series(names=[name], values=[value])


@button_remove.click
def remove_slice():
    datapoint: PieChart.ClickedDataPoint = pie_chart.get_clicked_datapoint()
    datapoint.data_index
    pie_chart.delete_series(datapoint.data_index)
    button_remove.disable()
default
stroke_width = 0
data_labels = True
type='donut'
type='pie'

mini_app
🔥
supervisely-ecosystem/ui-widgets-demos/charts-and-plots/009_pie_chart/src/main.py