Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • data
  • columns
  • fixed_columns_num
  • widget_id
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Prepare function that creates example pandas table
  • Initialize ClassicTable widget
  • Create app layout
  • Create app using layout

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Tables

ClassicTable

PreviousTableNextRadioTable

Last updated 1 year ago

Was this helpful?

Introduction

ClassicTable is a widget in Supervisely that is used for displaying and manipulating data in a table format. It is similar to the Table widget but with fewer customization options and functionalities.

Note, that this is a legacy version. It is recommended to use the newer Table widget instead.

Function signature

classic_table = ClassicTable()
classic_table.read_pandas(pd.DataFrame(data=data, index=b, columns=a))

or

classic_table = ClassicTable(
    data=pd.DataFrame(data=data, index=b, columns=a),
    fixed_columns_num=1,
    widget_id=None
)

Parameters

Parameters
Type
Description

data

pd.DataFrame() or dict

Data of table

columns

list

List of columns names

fixed_columns_num

int

Number of fixed columns (left to right)

widget_id

str

ID of the widget

data

Data of table in different formats:

  1. Pandas Dataframe:

pd.DataFrame(data=data, columns=columns)
  1. Python dict with structure:

 {
    "columns_names": ["col_name_1", "col_name_2", ...],
    "values_by_rows": [
        ["row_1_column_1", "row_1_column_2", ...],
        ["row_2_column_1", "row_2_column_2", ...],
        ...
    ]
}

# prepare data for table
a = list(range(1, 11))
b = list(range(1, 5))

data = []
for row in b:
    temp = [round(row * number, 1) for number in a]
    data.append(temp)

a = [str(i) for i in a]
b = [str(i) for i in b]

data = pd.DataFrame(data=data, index=b, columns=a)

classic_table = ClassicTable(data=df)py

columns

List of columns names.

type: list

default value: None

columns = [f"Col#{i}" for i in range(1, 11)]
data = pd.DataFrame(data=data, index=b, columns=columns)

classic_table = ClassicTable(data=df)

fixed_columns_num

Number of fixed colums (left to right).

type: int

default value: None

classic_table = ClassicTable(data=df, fixed_columns_num=2)

widget_id

ID of the widget.

type: str

default value: None

Methods and attributes

Attributes and Methods
Description

fixed_columns_num

Get or set number of fixed columns (left to right) property.

to_json()

Convert table data to json.

to_pandas()

Convert table data to pandas dataframe.

read_json(value: dict)

Read and set table data from json.

read_pandas(value: pd.DataFrame)

Read and set table data from pandas dataframe.

insert_row(index=-1)

Insert new row in table.

pop_row(value: pd.DataFrame)

Remove row from table by index.

get_selected_cell(state)

Get selected table cell info.

Mini App Example

You can find this example in our Github repository:

Import libraries

import os

import pandas as pd
import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import Card, ClassicTable, Container

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Prepare function that creates example pandas table

def multiplication_table():
    a = list(range(1, 11))
    b = list(range(1, 6))

    data = []
    for row in b:
        temp = [round(row * number, 1) for number in a]
        temp[-1] = sly.app.widgets.Table.create_button("Delete row")
        data.append(temp)

    a = [f"Col#{str(i)}" for i in a]
    b = [str(i) for i in b]
    return pd.DataFrame(data=data, index=b, columns=a)

Create data for table.

df = multiplication_table()

Initialize ClassicTable widget

classic_table = ClassicTable(data=df)

or you can initialize empty table and set data later.

classic_table = ClassicTable()
classic_table.read_pandas(df)

Create app layout

Prepare a layout for app using Card widget with the content parameter and place widget that we've just created in the Container widget.

card = Card(
    title="Classic Table",
    content=classic_table,
)
layout = Container(widgets=[card])

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)

🔥
ui-widgets-demos/tables/002_classic_table/src/main.py