Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • How to debug this tutorial
  • Import libraries
  • Init API client
  • Get variables from environment
  • Use tqdm for tracking progress
  • Example 1. Use tqdm in the loop.
  • Example 2. Download image project and upload it into Team files using tqdm progress bar.
  • Example 3 (advanced). Use native sly.Progress functions for downloading.

Was this helpful?

Edit on GitHub
  1. Getting Started
  2. Python SDK tutorials
  3. Common

Progress Bar tqdm

PreviousIterate over a local projectNextCloning projects for development

Last updated 1 year ago

Was this helpful?

Introduction

In this tutorial we will show you how to use module inside methods of Supervisely SDK in a seamless manner.

🔥 With this update, any sly.Progress object can be easily replaced with tqdm, allowing you to seamlessly integrate your progress tracking with the powerful features of tqdm. Say goodbye to headaches!

📗 Everything you need to reproduce : source code.

How to debug this tutorial

Step 1. Prepare ~/supervisely.env file with credentials.

Step 2. Clone with source code and demo data and create .

git clone https://github.com/supervisely-ecosystem/tutorial-tqdm.git

cd tutorial-tqdm

./create_venv.sh

Step 3. Open repository directory in Visual Studio Code.

code .

Step 4. Change project ID in local.env file by copying the ID from the context menu of the workspace.

PROJECT_ID=17732 # ⬅️ change value
TEAM=449 # ⬅️ change value

Step 5. Start debugging src/main.py.

Import libraries

import os
import time
from dotenv import load_dotenv

import supervisely as sly
from tqdm import tqdm

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance.

if sly.is_development():
    load_dotenv("local.env")
    load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Get variables from environment

project_id = sly.env.project_id()
team_id = sly.env.team_id()

Use tqdm for tracking progress

Example 1. Use tqdm in the loop.

Source code:

batch_size = 10
data = range(100)

with tqdm(total=len(data)) as pbar:
    for batch in sly.batched(data, batch_size):
        for item in batch:
            time.sleep(0.1)
        pbar.update(batch_size)

Output:

When running locally, the fancy-looking tqdm progress bar will be displayed in the console, while in production, JSON-looking lines with relevant information will be logged and fancy-looking progress bar will be shown in Workspace Tasks.

Example 2. Download image project and upload it into Team files using tqdm progress bar.

Source code:

Download your project with previously initiialized project_id

    n_count = api.project.get_info_by_id(project_id).items_count
    p = tqdm(desc="Downloading", total=n_count)

    sly.download(api, project_id, 'your/local/dir/', progress_cb=p)

Output:

Then, you can upload downloaded directory to Team files:

Source code:

    p = tqdm(
        desc="Uploading",
        total=sly.fs.get_directory_size('your/local/dir/'),
        unit="B",
        unit_scale=True,
    )
    api.file.upload_directory(
        team_id,
        'your/local/dir/',
        '/your/teamfiles/dir/',
        progress_size_cb=p,
    )

Output:

Example 3 (advanced). Use native sly.Progress functions for downloading.

Let's reproduce previous example with Supervisely's native Progress bar.

Source code:

    n_count = api.project.get_info_by_id(project_id).items_count
    p = sly.Progress("Downloading", n_count)

    sly.download(api, project_id, 'your/local/dir/', progress_cb=p)

Output:

You will get files in progress.

Then, you can upload downloaded directory to Team files:

Source code:

    p = sly.Progress(
        "Uploading",
        sly.fs.get_directory_size('your/local/dir/'),
        is_size=True,
    )
    api.file.upload_directory(
        team_id,
        'your/local/dir/',
        '/your/teamfiles/dir/',
        progress_size_cb=p,
    )

Output:

You can swap equivalent arguments from sly.Progress while initializing tqdm. For example, the desc argument can be replaced with message, and total can be replaced with total_cnt. Additionally, both unit="B" and unit_scale=True can be replaced with is_size=True.

In this tutorial, you will need an workspace ID that you can get from environment variables.

Example 1a
Example 1b
This is how progress bar might look like in the Workspace Tasks
Example 2a
Example 2b
Example 3a
Example 3b
🎉
tqdm
this tutorial is on GitHub
Learn more here.
repository
Virtual Environment
Learn more here