Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • How to debug this tutorial
  • Python Code
  • Import libraries
  • Init API client
  • Create new tag metadata
  • Or use existing tag metadata
  • Create new tag with value and add to objects
  • Update tag value
  • Delete tag

Was this helpful?

Edit on GitHub
  1. Getting Started
  2. Python SDK tutorials
  3. Point Clouds

Point Cloud Episodes and object tags

How to create and add tags, update and remove tags from Point Cloud Episode annotation objects and frames

PreviousPoint Clouds (LiDAR)Next3D point cloud object segmentation based on sensor fusion and 2D mask guidance

Last updated 6 months ago

Was this helpful?

Introduction

In this tutorial, you will learn how to create new tags and assign them, update its values or remove tags for selected annotation objects or frames (with these objects) in Point Cloud Episodes using the Supervisely SDK.

Supervisely supports different types of tags:

  • NONE

  • ANY_NUMBER

  • ANY_STRING

  • ONEOF_STRING

And could be applied to:

  • ALL

  • IMAGES_ONLY - PCD in our case

  • OBJECTS_ONLY

You can find all the information about those types in the section and documentation.

You can learn more about working with Point Cloud Episodes (PCE) using and what are.

Everything you need to reproduce : source code, Visual Studio Code configuration, and a shell script for creating virtual env.

How to debug this tutorial

git clone https://github.com/supervisely-ecosystem/how-to-work-with-pce-object-tags
cd how-to-work-with-pce-object-tags
./create_venv.sh

Step 3. Open repository directory in Visual Studio Code.

code -r .

There you see project classes after Demo initialization

Project tags metadata after Demo initialization. This data is empty.

Visualization in Labeling Tool before we add tags

Step 5. Change Workspace ID in local.env file by copying the ID from the context menu of the workspace. Do the same for Project ID and Dataset ID .

WORKSPACE_ID=82841  # ⬅️ change value
PROJECT_ID=239385  # ⬅️ change value
DATASET_ID=774629  # ⬅️ change value

Step 6. Start debugging src/main.py

Python Code

Import libraries

import os
import supervisely as sly
from dotenv import load_dotenv

Init API client

Init api for communicating with Supervisely Instance. First, we load environment variables with credentials, Project and Dataset IDs:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))
api = sly.Api.from_env()

With next lines we will get values from local.env.

project_id = sly.env.project_id()
dataset_id = sly.env.dataset_id()

By using these IDs, we can retrieve the project metadata and annotations, and define the values needed for the following operations.

project_meta_json = api.project.get_meta(project_id)
project_meta = sly.ProjectMeta.from_json(data=project_meta_json)

key_id_map = sly.KeyIdMap()

pcd_ep_ann_json = api.pointcloud_episode.annotation.download(dataset_id)

Create new tag metadata

To create a new tag, you need to first define a tag metadata. This includes specifying the tag name, type, the objects to which it can be added, and the possible values. This base information will be used to create the actual tags.

tag_name = "Car"
tag_values = ["car_1", "car_2"]

if not project_meta.tag_metas.has_key(tag_name):
    new_tag_meta = sly.TagMeta(
        tag_name,
        sly.TagValueType.ONEOF_STRING,
        applicable_to=sly.TagApplicableTo.OBJECTS_ONLY,
        possible_values=tag_values,
    )

Then recreate the source project metadata with new tag metadata.

    new_tags_collection = project_meta.tag_metas.add(new_tag_meta)
    new_project_meta = sly.ProjectMeta(
        tag_metas=new_tags_collection, obj_classes=project_meta.obj_classes
    )
    api.project.update_meta(project_id, new_project_meta)

New tag metas added

Right after updating the metadata, we need to obtain added metadata on the previous step to get the IDs in the next steps.

    new_prject_meta_json = api.project.get_meta(project_id)
    new_project_meta = sly.ProjectMeta.from_json(data=new_prject_meta_json)
    new_tag_meta = new_project_meta.tag_metas.get(new_tag_meta.name)

Or use existing tag metadata

If a tag with the tag_name already exists in the metadata, we could just use it if it fits our requirements.

else:
    new_tag_meta = project_meta.tag_metas.get(tag_name)
    if sorted(new_tag_meta.possible_values) != sorted(tag_values):
        sly.logger.warning(
            f"Tag [{new_tag_meta.name}] already exists, but with another values: {new_tag_meta.possible_values}"
        )

In case this tag doesn't meet our requirements, it would be better to create a new one with a different name. On the other hand, we could update the tag values.

Create new tag with value and add to objects

When you pass information from tag metadata using its ID to the object, a new tag is created and appended.

If you want to add a tag with value, you can define the value argument with possible values.

If you want to add a tag to frames, you can define the frame_range argument.

project_objects = pcd_ep_ann_json.get("objects")
tag_frames = [0, 26]
created_tag_ids = {}

for object in project_objects:
    if object["classTitle"] == "Car":
        tag_id = api.pointcloud_episode.object.tag.add(
            new_tag_meta.sly_id, object["id"], value="car_1", frame_range=tag_frames
        )
        created_tag_ids[object["id"]] = tag_id

created_tag_ids uses to store IDs for the following operations.

Visualization in Labeling Tool with new tags

You could more precisely define tag_frames in your dataset using the following example:

replace line number 46 of source code with this:

project_frames = pcd_ep_ann_json.get("frames")

insert on line number 51 of source code this:

        frame_range = []
        for frame in project_frames:
            for figure in frame["figures"]:
                if figure["objectId"] == object["id"]:
                    frame_range.append(frame["index"])
        frame_range = frame_range[0:1] + frame_range[-1:]

You will most likely need to modify this example to more accurately define the objects. It is only provided to make it faster and easier to understand where and with what information to interact.

Update tag value

Also, if you need to correct tag values, you can easily do so as follows:

tag_id_to_operate = created_tag_ids.get(project_objects[0]["id"])

api.pointcloud_episode.object.tag.update(tag_id_to_operate, "car_2")

In our example, we took the first annotated object and the tag assigned to it in the previous step.

You can use a different approach to obtain information about objects, their tags, and the values of those tags according to your goal.

Delete tag

To remove a tag, all you need is its ID.

api.pointcloud_episode.object.tag.remove(tag_id_to_operate)

Please note that you are only deleting the tag from the object. To remove a tag from the project (TagMeta), you need to use other SDK methods.

Step 1. Prepare ~/supervisely.env file with credentials.

Step 2. Clone with source code and create .

Step 4. Get, for example, project from Ecosystem.

🎉
Tags in Annotations
SDK
Supervisely SDK
Annotations for PCE
this tutorial is on GitHub
repository
Virtual Environment
Demo KITTI pointcloud episodes annotated
Learn more here.