Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • frames_count
  • intervals
  • colors
  • height
  • pointer_color
  • tooltip_content
  • widget_id
  • Mini App Example
  • Import libraries
  • Write a function for dividing the total number of frames by ranges
  • Write function generating random hex colors for each range
  • Init API client
  • Initialize Video ID we will use
  • Get video info from server and prepare VideoThumbnail widget
  • Get video intervals and colors from video frame count
  • Initialize Timeline widget
  • Create InputNumber widget for setting current frame
  • Create Timeline container
  • Create app layout
  • Create app using layout
  • Add callbacks for changing the current frame

Was this helpful?

Edit on GitHub
  1. 🔥App development
  2. Widgets
  3. Controls

Timeline

PreviousFileStorageUploadNextPagination

Last updated 1 year ago

Was this helpful?

Introduction

Timeline widget is used to display video timeline. It can be used to get current frame and display information about the frame or it's annotation.

Function signature

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 6], [6, 11], [12, 15], [16, 17], [18, 19], [20, 31]],
    colors=["#DB7093", "#93db70", "#7093db", "#70dbb8", "#db8370", "#db70c9"],
    height="30px",
)
default

Parameters

Parameters
Type
Description

frames_count

int

Timeline frames count

intervals

List[List[int]]

Frame intervals

colors

List[str]

Intervals colors in hex color codes

height

str

Timeline height in px

pointer_color

str

Color of the pointer

tooltip_content

Widget

Content of the tooltip

widget_id

str

ID of the widget

frames_count

Timeline (video) frames count.

type: int

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 6], [6, 11], [12, 15], [16, 17], [18, 19], [20, 31]],
    colors=["#DB7093", "#93db70", "#7093db", "#70dbb8", "#db8370", "#db70c9"],
)

intervals

Set frame intervals. Each interval is a list of two integers: [start_frame, end_frame]. Intervals and color lists must be the same length.

type: List[List[int]]

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 15], [16, 31]],
    colors=["#93db70", "#7093db"],
)

colors

Set interval colors in hex color codes. Intervals and color lists must be the same length.

type: List[str]

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 31]],
    colors=["#4C0013"],
)

height

Set widget height in px.

type: str

default value: 30px

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 6], [6, 11], [12, 15], [16, 17], [18, 19], [20, 31]],
    colors=["#DB7093", "#93db70", "#7093db", "#70dbb8", "#db8370", "#db70c9"],
    height="60px",
)

pointer_color

Color of the pointer. Set hex color code or None to use the default color.

type: str

default value: None

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 6], [6, 11], [12, 15], [16, 17], [18, 19], [20, 31]],
    colors=["#DB7093", "#93db70", "#7093db", "#70dbb8", "#db8370", "#db70c9"],
    pointer_color="#FF0000", # red color
)

tooltip_content

Content of Tooltip.

type: Widget

default value: None

timeline = Timeline(
    frames_count=31,
    intervals=[[0, 6], [6, 11], [12, 15], [16, 17], [18, 19], [20, 31]],
    colors=["#DB7093", "#93db70", "#7093db", "#70dbb8", "#db8370", "#db70c9"],
    pointer_color="#FF0000", # red color
    tooltip_content=Text("Clickable Area", "text"),
)

widget_id

ID of the widget.

type: str

default value: None

Mini App Example

You can find this example in our Github repository:

supervisely-ecosystem/ui-widgets-demos/controls/008_timeline/src/main.py

Import libraries

import os
from random import randint
import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import (
    Card,
    Container,
    Timeline,
    Text,
    InputNumber,
    VideoThumbnail,
)

Write a function for dividing the total number of frames by ranges

def divide_to_ranges(total, n):
    step = total // n
    ranges = []
    for i in range(n):
        start = i * step
        end = start + step - 1 if i < n - 1 else total - 1
        ranges.append([start, end])
    return ranges, len(ranges)

Write function generating random hex colors for each range

def generate_hex_colors(n):
    colors = []
    for _ in range(n):
        color = "#{:06x}".format(randint(0, 0xFFFFFF))
        colors.append(color)
    return colors

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Initialize Video ID we will use

video_id = 350000  # set your video id here

Get video info from server and prepare VideoThumbnail widget

video = api.video.get_info_by_id(video_id)
video_thumbnail = VideoThumbnail(video)

Get video intervals and colors from video frame count

video_intervals, intervals_n = divide_to_ranges(video.frames_count, 5)
intervals_colors = generate_hex_colors(intervals_n)

Initialize Timeline widget

timeline = Timeline(
    frames_count=video.frames_count,
    intervals=video_intervals,
    colors=intervals_colors,
    height="35px",
)

Create InputNumber widget for setting current frame

timeline_select_frame = InputNumber(value=1, min=0, max=video.frames_count, step=1)
timeline_text = Text("<span>Frame:</span>")

Create Timeline container

timeline_container = Container(
    widgets=[
        timeline,
        timeline_text,
        timeline_select_frame,
    ],
    direction="horizontal",
    fractions=[1, 0, 0],
    style="place-items: center;",
)

Create app layout

main_container = Container(widgets=[video_thumbnail, timeline_container])
layout = Card(title="Timeline", content=main_container)

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)

Add callbacks for changing the current frame

@timeline.click
def show_current_value(pointer):
    timeline_select_frame.value = pointer


@timeline_select_frame.value_changed
def set_timeline_pointer(frame):
    timeline.set_pointer(frame)
frames_count