Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • content
  • checked
  • widget_id
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Initialize Project ID we will use
  • Initialize Checkbox widget
  • Create more widgets
  • Create app layout
  • Create app using layout
  • Add functions to control widget from python code

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Controls

Checkbox

PreviousButtonNextRadioGroup

Last updated 2 years ago

Was this helpful?

Introduction

This widget is a simple and intuitive interface element that allows users to select given option. The Checkbox widget can be customized with different label text and default state. By providing an easy and efficient way to make selections, the Checkbox widget is an essential tool for any image or video annotation project.

Function signature

checkbox = Checkbox(
    content="Enable",
    checked=False,
    widget_id=None,
)

Parameters

Parameters
Type
Description

content

Union[Widget, str]

Checkbox content

checked

bool

Return True if checkbox is checked

widget_id

str

ID of the widget

content

Checkbox content.

type: Union[Widget, str]

checkbox = Checkbox(content="Enable")

checked

Whether Checkbox is checked. Return True if checked.

type: bool

default value: False

checkbox = Checkbox(content="Enable", checked=True)

widget_id

ID of the widget.

type: str

default value: None

Methods and attributes

Attributes and Methods
Description

is_checked()

Return True if checked, else False.

check()

Enable checked property.

uncheck()

Disable checked property.

@value_changed

Decorator function is handled when checkbox value is changed.

Mini App Example

You can find this example in our Github repository:

Import libraries

import os

import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import (
    Button,
    Card,
    Checkbox,
    Container,
    NotificationBox,
    SelectDataset,
)

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Initialize Project ID we will use

project_id = sly.env.project_id()

Initialize Checkbox widget

checkbox = Checkbox(
    content="Enable",
    checked=False,
)

Create more widgets

In this tutorial we will use SelectDataset, Button, NotificationBox widgets to show how to control Checkbox widget from python code.

select_dataset = SelectDataset(
    project_id=project_id,
    compact=True,
)

show_btn = Button(text="Show info")

note = NotificationBox()
note.hide()

Create app layout

Prepare a layout for app using Card widget with the content parameter and place widget that we've just created in the Container widget.

# create new cards
card = Card(
    title="Checkbox demo",
    content=Container(widgets=[select_dataset, checkbox, show_btn, note]),
)
layout = Container(widgets=[card])

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)

Add functions to control widget from python code

@checkbox.value_changed
def hide_notification(value):
    if value is True:
        select_dataset.disable()
    else:
        select_dataset.enable()

    note.hide()


@show_btn.click
def show_info():
    images_count = 0

    if checkbox.is_checked():
        datasets_list = api.dataset.get_list(project_id=project_id)
        select_dataset.disable()
        for dataset in datasets_list:
            images_count += dataset.images_count if dataset.images_count is not None else 0

    else:
        ds_id = select_dataset.get_selected_id()
        dataset = api.dataset.get_info_by_id(ds_id)
        images_count = dataset.images_count

    note.title = f"Total count of images in selected datasets: {images_count}."
    note.show()

🔥
ui-widgets-demos/controls/002_checkbox/src/main.py