Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • project_id
  • project_fs
  • random_splits
  • tags_splits
  • datasets_splits
  • widget_id
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Prepare project_id, download project and create project_fs
  • Initialize TrainValSplits widget
  • Initialize Button and Text widget we will use
  • Create app layout
  • Create app using layout
  • Add function to control widgets from python code

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Controls

TrainValSplits

PreviousSliderNextFileStorageUpload

Last updated 1 year ago

Was this helpful?

Introduction

TrainValSplits widget in Supervisely is a tool that helps with the creation of training and validation datasets. The widget allows for easy splitting of the original dataset into training and validation sets based on customizable parameters such as percentage split or based on datasets or specific tag. TrainValSplits helps improve the performance of machine learning models by ensuring that they are trained on diverse and representative data.

Function signature

TrainValSplits(
    project_id=None,
    project_fs=None,
    random_splits=True,
    tags_splits=True,
    datasets_splits=True,
    widget_id=None,
)
default

Parameters

Parameters
Type
Description

project_id

int

Input Project ID

project_fs

str

Path to input Project on local host

random_splits

bool

Shuffle data and split with defined probability

tags_splits

bool

Images should have assigned train or val tag

datasets_splits

bool

Select one or several datasets for every split

widget_id

str

ID of the widget

project_id

Determine input Project ID.

type: int

default value: None

splits = TrainValSplits(project_id=project_id)

project_fs

Determine path to input Project on local host.

type: str

default value: None

project_dir = os.path.join(sly.app.get_data_dir(), project_info.name)
sly.Project.download(api, project_id, project_dir)
project_fs = sly.Project(project_dir, sly.OpenMode.READ)

splits = TrainValSplits(project_fs=project_fs)

random_splits

Shuffle data and split with defined probability.

type: bool

default value: true

splits = TrainValSplits(
    project_id=project_id,
    random_splits=False,
)

tags_splits

Images should have assigned train or val tag.

type: bool

default value: true

splits = TrainValSplits(
    project_id=project_id,
    tags_splits=False,
)

datasets_splits

Select one or several datasets for every split.

type: bool

default value: true

splits = TrainValSplits(
    project_id=project_id,
    datasets_splits=False,
)

widget_id

ID of the widget.

type: str

default value: None

Methods and attributes

Attributes and Methods
Description

get_splits()

Return result train/val split.

disable()

Disable widget.

enable()

Enable widget.

Mini App Example

You can find this example in our Github repository:

Import libraries

import os

import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import Card, Container, TrainValSplits, Button, Text

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Prepare project_id, download project and create project_fs

project_id = sly.env.project_id()
project_info = api.project.get_info_by_id(project_id)
project_dir = os.path.join(sly.app.get_data_dir(), project_info.name)
sly.fs.remove_dir(project_dir)
sly.Project.download(api, project_id, project_dir)
project_fs = sly.Project(project_dir, sly.OpenMode.READ)

Initialize TrainValSplits widget

splits = TrainValSplits(project_fs=project_fs)

Initialize Button and Text widget we will use

button = Button("Get splits")
text = Text("")
text.hide()

Create app layout

Prepare a layout for app using Card widget with the content parameter and place widget that we've just created in the Container widget.

card = Card(
    title="Train Val Splits",
    content=Container([splits, button, text], gap=5),
)
layout = Container(widgets=[card])

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)

Add function to control widgets from python code

@button.click
def get_splits():
    train_set, val_set = splits.get_splits()
    text.text = f"Train split: {len(train_set)} images, Val split: {len(val_set)} images"
    text.show()
default
random_splits
tags_splits
datasets_splits

layout
🔥
supervisely-ecosystem/ui-widgets-demos/controls/006_train_val_splits/src/main.py