Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • title
  • series
  • zoom
  • stroke_curve
  • stroke_width
  • markers_size
  • data_labels
  • xaxis_type
  • xaxis_title
  • yaxis_title
  • yaxis_autorescale
  • height
  • decimalsInFloat
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Prepare series for chart
  • Initialize LineChart widget
  • Create app layout
  • Create app using layout
  • Add functions to control widgets from python code

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Charts and Plots

LineChart

PreviousCharts and PlotsNextGridChart

Last updated 1 year ago

Was this helpful?

Introduction

Linechart is a Supervisely widget that allows for visualizing data as a line chart. It supports data in pandas dataframe format or a Python list of dictionaries with a specific structure. This widget could be considered an advanced version of a LinePlot widget with the support of library.

The widget allows for customization of the chart title, axis titles, and color scheme. Linechart also supports zooming, panning, and downloading the chart as png, svg, or csv. Additionally, it can detect clicks on data points and respond to them through Python code

Function signature

size1 = 10
x1 = list(range(size1))
y1 = np.random.randint(low=10, high=148, size=size1).tolist()
s1 = [{"x": x, "y": y} for x, y in zip(x1, y1)]

size2 = 30
x2 = list(range(size2))
y2 = np.random.randint(low=0, high=300, size=size2).tolist()
s2 = [{"x": x, "y": y} for x, y in zip(x2, y2)]

line_chart = LineChart(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    xaxis_type="category",
)

Parameters

Parameters
Type
Description

title

str

Line chart title

series

list

List of series including names and lists of X, Y coordinates

zoom

bool

Enable zoom on Linechart

stroke_curve

Literal["smooth", "straight"]

Set line type (straight or curved)

stroke_width

int

Set line width

markers_size

int

Set point markers size

data_labels

bool

If True it will display Y value of data for each datapoint

xaxis_type

Literal["numeric", "category", "datetime"]

Set type of divisions on X axis

xaxis_title

str

Set title for the X axis

yaxis_title

str

Set title for the Y axis

yaxis_autorescale

bool

Set autoscaling of the Y axis

height

Union[int, str]

Widget height

decimalsInFloat

int

Set number of decimals in float values of Y axis

data_type

Literal["dict", "tuple"]

The representation of xy coordinates. Default as a dictionary.

title

Line chart title

type: str

line_chart = LineChart(
    title="Linechart title",
    series=[{"name": "Max", "data": s1}],
    xaxis_type="numeric",
)

series

List of series including names and lists of X, Y coordinates

type: list

line_chart = LineChart(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    xaxis_type="numeric",
)

zoom

Enable zoom on Linechart

type: bool

default False

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    zoom=True
)

stroke_curve

Set line type (straight or curved)

type: Literal["smooth", "straight"]

default "smooth"

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    stroke_curve="straight"
)

stroke_width

Set line width

type: int

default 2

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    stroke_width=5
)

markers_size

Set point markers size

type: int

default 4

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    markers_size=8
)

data_labels

If True it will display Y value of data for each

type: bool

default False

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    data_labels=True
)

xaxis_type

Set type of divisions on X axis

type: Literal["numeric", "category", "datetime"]

default numeric

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    xaxis_type="numeric",
)

xaxis_title

Set title for the X axis

type: str

default None

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    xaxis_type="category",
    xaxis_title="days",
)

yaxis_title

Set title for the Y axis

type: str

default None

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    xaxis_type="category",
    yaxis_title="sales",
)

yaxis_autorescale

Set autoscaling of the Y axis

type: bool

default True

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    yaxis_autorescale=False
)

height

Widget height

type: Union[int, str]

default 350

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    height=150
)

decimalsInFloat

Set number of decimals in float values of Y axis

type: int

default 2

line_chart = LineChart(
    title="Title",
    series=[{"name": "Max", "data": s1}],
    decimalsInFloat=1
)

Methods and attributes

Attributes and Methods
Description

update_y_range(ymin: int, ymax: int, send_changes=True)

Update chart Y axis range.

get_clicked_value()

Get value of clicked datapoint.

get_clicked_datapoint()

Get clicked datapoint.

set_title(title: str, send_changes: bool = True)

Set chart title.

add_series(name: str, x: list, y: list)

Add new series to chart.

add_series_batch(series: dict)

Add batch of series to chart.

set_series(series: list, description: str)

Set series to chart.

set_colors(colors: list, description: str)

Set colors for series in chart.

@click

Decorator function to handle chart click.

Mini App Example

You can find this example in our Github repository:

Import libraries

import os

import numpy as np
import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import Card, Container, LineChart, Table

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Prepare series for chart

size1 = 10
x1 = list(range(size1))
y1 = np.random.randint(low=10, high=148, size=size1).tolist()
s1 = [{"x": x, "y": y} for x, y in zip(x1, y1)]

size2 = 30
x2 = list(range(size2))
y2 = np.random.randint(low=0, high=300, size=size2).tolist()
s2 = [{"x": x, "y": y} for x, y in zip(x2, y2)]

Initialize LineChart widget

line_chart = LineChart(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    xaxis_type="category",
)

Create app layout

Prepare a layout for app using Card widget with the content parameter.

row_id = 1
columns = ["id", "Line", "x", "y"]
result_table = Table(data=[], columns=columns, width="25%")


container = Container(widgets=[line_chart, result_table])
card = Card(title="Line Chart", content=container)

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=card)

Add functions to control widgets from python code

@line_chart.click
def add_row_to_table(datapoint: LineChart.ClickedDataPoint):
    global row_id
    row = [row_id, datapoint.series_name, datapoint.x, datapoint.y]
    row_id += 1
    result_table.insert_row(row)

🔥
ApexCharts
ui-widgets-demos/charts and plots/001_line_chart/src/main.py