Multiview images

Introduction

This easy-to-follow tutorial will show you how to upload multiview images and label groups to Supervisely using Python SDK and get the advantage of the multiview image annotaion in the Supervisely Labeling Toolbox, which allows you to label images quickly and efficiently on one screen. You will learn how to enable multiview in the project settings, upload multiview images and explore the multiview in the labeling interface.

Import multiview images

How to debug this tutorial

Everything you need to reproduce this tutorial is on GitHub: source code and additional app files.

Step 1. Prepare ~/supervisely.env file with credentials. Learn more here.

Step 2. Clone the repository with source code and demo data and create a Virtual Environment.

git clone https://github.com/supervisely-ecosystem/import-multiview-images-tutorial.git

cd import-multiview-images-tutorial

sh create_venv.sh

Step 3. Open the repository directory in Visual Studio Code.

code -r .

Step 4. Change the Workspace ID in the local.env file by copying the ID from the context menu.

WORKSPACE_ID=942 # ⬅️ change value

Step 5. Start debugging src/main.py.

Supervisely instance version >= 6.9.14 Supervisely SDK version >= 6.72.214

In the tutorial, Supervisely Python SDK version is not directly defined in the requirements.txt. But when developing your app, we recommend defining the SDK version in the requirements.txt.

Import libraries

import os

from dotenv import load_dotenv

import supervisely as sly

Load environment variables

if sly.is_development():
    load_dotenv("local.env")
    load_dotenv(os.path.expanduser("~/supervisely.env"))

workspace_id = sly.env.workspace_id()

Init API client

api = sly.Api.from_env()

Explore the directory with images

here is the structure of the directory with images (src/images):

 πŸ“‚ images
 ┣ πŸ“‚ audi
 ┃ ┣ 🏞️ audi_01.jpg
 ┃ ┣ 🏞️ audi_02.jpg
 ┃ β”— 🏞️ audi_03.jpg
 ┣ πŸ“‚ mercedes
 ┃ ┣ 🏞️ mercedes_01.jpg
 ┃ ┣ 🏞️ mercedes_02.jpg
 ┃ ┣ 🏞️ mercedes_03.jpg
 ┃ ┣ 🏞️ mercedes_04.jpg
 ┃ ┣ 🏞️ mercedes_05.jpg
 ┃ β”— 🏞️ mercedes_06.jpg
 ┣ πŸ“‚ renault
 ┃ ┣ 🏞️ renault_01.jpg
 ┃ ┣ 🏞️ renault_02.jpg
 ┃ ┣ 🏞️ renault_03.jpg
 ┃ β”— 🏞️ renault_04.jpg
 β”— πŸ“‚ ford
   ┣ 🏞️ ford_01.jpg
   ┣ 🏞️ ford_02.jpg
   ┣ 🏞️ ford_03.jpg
   ┣ 🏞️ ford_04.jpg
   β”— 🏞️ ford_05.jpg

Create a new project and dataset

project = api.project.create(workspace_id, "Grouped cars", change_name_if_conflict=True)
dataset = api.dataset.create(project.id, "ds0")

Enable multiview in the project settings

api.project.set_multiview_settings(project.id)

You can also enable multiview in the Image Labeling Tool interface:

Enable multiview mode in Labeling Toolbox

And now we're ready to upload images.

How to upload multiview images

In this tutorial, we'll be using the api.image.upload_multiview_images method to upload multiview images to Supervisely.

def upload_multiview_images(
    dataset_id: int,
    group_name: str,
    paths: Optional[List[str]] = None,
    metas: Optional[List[Dict]] = None,
    progress_cb: Optional[Union[tqdm, Callable]] = None,
    links: Optional[List[str]] = None,
    conflict_resolution: Optional[Literal["rename", "skip", "replace"]] = "rename",
    force_metadata_for_links: Optional[bool] = False,
) -> List[ImageInfo]:
Parameters
Type
Description

dataset_id

int

ID of the dataset to upload

group_name

str

Name of the group (tag value)

paths

Optional[List[str]]

List of paths to the images (optional)

metas

Optional[List[Dict]]

List of image metas (optional)

progress_cb

Optional[Union[tqdm, Callable]]

Function for tracking upload progress (optional)

links

Optional[List[str]]

List of links to the images (optional)

conflict_resolution

Literal["rename", "skip", "replace"]

Conflict resolution strategy (optional)

force_metadata_for_links

Optional[bool]

Force metadata for links (optional)

So, the method uploads images to Supervisely and returns a list of ImageInfo objects.

Upload multiview images

for group_dir in os.scandir("src/images"):
    if not group_dir.is_dir():
        continue
    images_paths = sly.fs.list_files(group_dir.path, valid_extensions=sly.image.SUPPORTED_IMG_EXTS)

    api.image.upload_multiview_images(dataset.id, group_dir.name, images_paths)

Group existing images for multiview

Available starting from version v6.73.236 of the Supervisely Python SDK.

If you already have images uploaded to Supervisely and you want to group them for multiview, you can use the api.image.group_images_for_multiview method.

images = [2389126, 2389127, 2389128, 2389129, 2389130, ...]

for idx, batch_ids in enumerate(sly.batched(images, batch_size=6)):
    api.image.group_images_for_multiview(batch_ids, f"group_{idx}")

Grouped view in the labeling interface

So now, that we've uploaded all the images, let's take a look at the labeling interface.

Multiview mode in the labeling interface

As you can see, the images in the Labeling tool are grouped in the same way as in your images in folders (images from one folder are combined into one group). When importing, each image from the folders will be assigned tags with the same values, which allows them to be grouped into one group.

Multiview labeling can be very useful when annotating objects of multiple classes simultaneously on several images. You don't need to shift your attention to find the necessary class every time you switch between images, allowing you to increase efficiency and save time and effort.

Multiview labeling

How to upload label groups

Available starting from version v6.73.293 of the Supervisely Python SDK.

There are many cases when you need to group labels together. For example, if you have some labels captured from different perspectives that represent one object on different images and you want to analyze the object as a whole and not as separate instances, you can join them into a single group.

Label group - is a simple group of objects, that displays the relationship between objects and helps you to quickly locate the object on different images and to avoid labeling the same object multiple times.

label group example

Using the api.annotation.append_labels_group method, you can upload labels as a group to images.

def append_labels_group(
    self,
    dataset_id: int,
    image_ids: List[int],
    labels: List[Label],
    project_meta: Optional[ProjectMeta] = None,
    group_name: Optional[str] = None,
) -> None:
Parameters
Type
Description

dataset_id

int

Destination Dataset ID

image_ids

List[int]

Multiview images IDs

labels

List[Label]

group of labels (should be the same length as images_ids)

project_meta

Optional[ProjectMeta]

Project Meta (optional). Provide to avoid extra API calls

group_name

Optional[str]

Group name (optional). Labels will be assigned by tag with this value.

Let's group it all together and upload local images and labels to Supervisely using this method.

Our sample data directory structure:

 πŸ“‚ data
 ┣ πŸ“‚ images
 ┃ ┣ 🏞️ car_01.jpeg
 ┃ ┣ 🏞️ car_02.jpeg
 ┃ β”— 🏞️ car_03.jpeg
 β”— πŸ“‚ masks
   ┣ 🏞️ car_01.png
   ┣ 🏞️ car_02.png
   β”— 🏞️ car_03.png
data sample

⬇️ You can download this sample here: data.zip

Follow the code below to upload images and labels to Supervisely.

project_id = 56
dataset_id = 196

# GET PROJECT META
meta = sly.ProjectMeta.from_json(api.project.get_meta(project_id, with_settings=True))

# GET OBJ CLASS FROM META BY NAME
obj_cls = meta.get_obj_class("car")
# OR CREATE NEW OBJ CLASS IF NOT EXISTS
# obj_cls = sly.ObjClass(name="car", geometry_type=sly.Rectangle, color=[255, 0, 0])
# UPDATE PROJECT META IF CREATING NEW OBJ CLASS
# meta = meta.add_obj_classes([obj_cls])
# api.project.update_meta(project_id, meta.to_json())

# SET MULTIVIEW SETTINGS
api.project.set_multiview_settings(project_id)

# GET IMAGES AND MASKS PATHS
image_dir = os.path.join("data", "images")
mask_dir = os.path.join("data", "masks")

# SORT PATHS FOR CORRECT LABELS ORDER
image_paths = sorted([os.path.join(image_dir, path) for path in os.listdir(image_dir)])
mask_paths =  sorted([os.path.join(mask_dir, path) for path in os.listdir(mask_dir)])

# CREATE LABELS
labels = []
for image_path, mask_path in zip(image_paths, mask_paths):
    # READ MASK
    bitmap = sly.Bitmap.from_path(mask_path)
    # CREATE LABEL
    label = sly.Label(geometry=bitmap, obj_class=obj_cls)
    labels.append(label)

# UPLOAD IMAGES
image_infos = api.image.upload_multiview_images(dataset_id, "white_car", image_paths)
images_ids = [image_info.id for image_info in image_infos]

# APPEND LABELS TO IMAGES
api.annotation.append_labels_group(
    dataset_id=dataset_id,
    image_ids=images_ids,
    labels=labels,
    project_meta=meta,
)
result

Summary

In this tutorial, you learned how to upload multiview images and label groups to Supervisely using Python SDK and get the advantage of the multiview image annotation in the labeling interface, which allows you to label images quickly and efficiently on one screen. Let's recap the steps we did:

  1. Create a new project and dataset.

  2. Set multiview settings for the project using the api.project.set_multiview_settings method.

  3. Upload images using the api.image.upload_multiview_images method.

  4. Group existing images for multiview using the api.image.group_images_for_multiview method.

  5. Upload label groups using the api.annotation.append_labels_group method.

And that's it! Now you can upload your multview images to Supervisely using Python SDK.

Last updated

Was this helpful?