Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • title
  • series
  • smoothing_weight
  • group_key
  • show_legend
  • decimals_in_float
  • xaxis_decimals_in_float
  • yaxis_interval
  • yaxis_autorescale
  • widget_id
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Prepare series for plot
  • Initialize LinePlot widget
  • Create app layout
  • Create app using layout

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Charts and Plots

LinePlot

Introduction

LinePlot widget in Supervisely is a widget that allows users to display one or more lines of data in a plot. It provides a canvas area that can be customized with various options, such as line smoothing, axis labels, and displaying legends. LinePlot widget is useful for visualizing time-series data or data with continuous variables.

Function signature

x1 = list(range(10))
y1 = [random.randint(10, 148) for _ in range(10)]

x2 = list(range(30))
y2 = [random.randint(1, 300) for _ in range(30)]

line_plot = LinePlot("My Line Plot")
line_plot.add_series("Line 1", x1, y1)
line_plot.add_series("Line 2", x2, y2)

or

size1 = 10
x1 = list(range(size1))
y1 = np.random.randint(low=10, high=148, size=size1).tolist()
s1 = [{"x": x, "y": y} for x, y in zip(x1, y1)]

size2 = 30
x2 = list(range(size2))
y2 = np.random.randint(low=0, high=300, size=size2).tolist()
s2 = [{"x": x, "y": y} for x, y in zip(x2, y2)]

line_plot = LinePlot(
    title="My Line Plot",
    series=[{"name": "Line 1", "data": s1}, {"name": "Line 2", "data": s2}],
    smoothing_weight=0,
    group_key=None,
    show_legend=True,
    decimals_in_float=2,
    xaxis_decimals_in_float=None,
    yaxis_interval=None,
    widget_id=None,
    yaxis_autorescale=True,
)

Parameters

Parameters
Type
Description

title

str

LinePlot title

series

list

List of input data series

smoothing_weight

int

Smoothing

group_key

str

Synced charts key

show_legend

bool

Show legend on LinePlot

decimals_in_float

int

The number of fractions to display floating values in Y axis

xaxis_decimals_in_float

int

The number of fractions to display floating values in X axis

yaxis_interval

list

Min and max values on Y axis (e.g. [0, 1])

yaxis_autorescale

bool

Set autoscaling of the Y axis

widget_id

str

ID of the widget

title

Determine LinePlot title.

type: str

line_chart = LinePlot(title="Max vs Denis")

series

Determine list of input data series.

type: list

default value: []

size1 = 10
x1 = list(range(size1))
y1 = np.random.randint(low=10, high=148, size=size1).tolist()
s1 = [{"x": x, "y": y} for x, y in zip(x1, y1)]

size2 = 30
x2 = list(range(size2))
y2 = np.random.randint(low=0, high=300, size=size2).tolist()
s2 = [{"x": x, "y": y} for x, y in zip(x2, y2)]

line_chart = LinePlot(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
)

smoothing_weight

Determine LinePlot smoothing.

type: int

default value: 0

group_key

Synced LinePlot key.

type: str

default value: None

show_legend

Determine showing legend on LinePlot.

type: bool

default value: True

line_chart = LinePlot(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    show_legend=False,
)

decimals_in_float

The number of fractions to display floating values in Y axis.

type: int

default value: 2

xaxis_decimals_in_float

The number of fractions to display floating values in X axis.

type: int

default value: None

line_chart = LinePlot(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    xaxis_decimals_in_float=44,
)

yaxis_interval

Determine min and max values on Y axis (e.g. [0, 1]).

type: list

default value: None

line_chart = LinePlot(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    yaxis_interval=[0, 200],
)

yaxis_autorescale

Set autoscaling of the Y axis.

type: bool

default value: True

widget_id

ID of the widget.

type: str

default value: None

Methods and attributes

Attributes and Methods
Description

update_y_range(ymin: int, ymax: int)

Update LinePlot data.

add_series(name: str, x: list, y: list, send_changes: bool = True)

Add new series of data in LinePlot.

add_series_batch(series: list)

Add new series of data in LinePlot by batch.

add_to_series(name_or_id: str or int, data: List[tuple] or List[dict] or tuple or dict)

Add data to existing series.

get_series_by_name(name: str)

Return series data by name.

Mini App Example

You can find this example in our GitHub repository:

Import libraries

import os
import numpy as np
import supervisely as sly
from supervisely.app.widgets import Card, Container, LinePlot
from dotenv import load_dotenv

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Prepare series for plot

size1 = 10
x1 = list(range(size1))
y1 = np.random.randint(low=10, high=148, size=size1).tolist()
s1 = [{"x": x, "y": y} for x, y in zip(x1, y1)]

size2 = 30
x2 = list(range(size2))
y2 = np.random.randint(low=0, high=300, size=size2).tolist()
s2 = [{"x": x, "y": y} for x, y in zip(x2, y2)]

Initialize LinePlot widget

line_chart = LinePlot(
    title="Max vs Denis",
    series=[{"name": "Max", "data": s1}, {"name": "Denis", "data": s2}],
    show_legend=False,
)

Create app layout

Prepare a layout for app using Card widget with the content parameter and place widget that we've just created in the Container widget.

card = Card(
    title="Line Plot",
    content=line_chart,
)

layout = Container(widgets=[card])

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)
PreviousConfusionMatrixNextGridPlot

Last updated 1 year ago

Was this helpful?

🔥
ui-widgets-demos/charts and plots/005_line_plot/src/main.py