Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Introduction
  • Function signature
  • Parameters
  • values
  • labels
  • filterable
  • placeholder
  • size
  • multiple
  • items_right_text
  • items_links
  • widget_id
  • Methods and attributes
  • Mini App Example
  • Import libraries
  • Init API client
  • Get Dataset ID from environment variables
  • Get images infos from current dataset
  • Create Image widget we will use in UI in this tutorial for demo
  • Initialize SelectString widget
  • Create app layout
  • Create app using layout
  • Add functions to control widget from code

Was this helpful?

Edit on GitHub
  1. App development
  2. Widgets
  3. Selection

SelectString

PreviousSelectAppSessionNextTransfer

Last updated 2 years ago

Was this helpful?

Introduction

SelectString widget in Supervisely is a dropdown menu that allows users to select a single string value from a list of predefined options. It is commonly used when a specific string value is required as input, such as when selecting a specific class name or annotation type. Selected value can be accessed programmatically in the code.

Function signature

SelectString(
    values=["cat", "dog","horse", "sheep", "squirrel"],
    labels=None,
    filterable=False,
    placeholder="select",
    size=None,
    multiple=False,
    widget_id=None,
)

Parameters

Parameters
Type
Description

values

List[str]

Determine list of strings for SelectString widget

labels

Optional[List[str]]

Determine list of label strings

filterable

Optional[bool]

Whether SelectString is filterable

placeholder

Optional[str]

Input placeholder

size

Optional[Literal["large", "small", "mini", None]]

Size of input

multiple

Optional[bool]

Whether multiple-select is activated

items_right_text

List[str]

Determine text on the right side of each item

items_links

List[str]

Display help text with links for each item

widget_id

Optional[str]

ID of the widget

values

Determine list of strings for SelectString widget.

type: List[str]

select_string = SelectString(["cat", "dog","horse", "sheep", "squirrel"])

labels

Determine list of label strings.

type: List[str] or None

default value: None

select_string = SelectString(
    ["string1", "string2", "string3"], labels=["label1", "label2", "label3"]
)

filterable

Whether SelectString is filterable.

type: Optional[bool]

default value: false

select_string = SelectString(
    ["cat", "dog", "horse"],
    filterable=True,
)

placeholder

Input placeholder.

type: Optional[str]

default value: select

select_string = SelectString(
    ["cat", "dog", "horse"],
    filterable=True,
    placeholder="Select string please",
)

size

Size of input.

type: Optional[Literal["large", "small", "mini", None]]

default value: None

select_string = SelectString(["cat"])
select_string_mini = SelectString(["cat"], size="mini")
select_string_small = SelectString(["cat"], size="small")
select_string_large = SelectString(["cat"], size="large")

multiple

Whether multiple-select is activated.

type: Optional[bool]

default value: false

select_string = SelectString(
    values=["cat", "dog","horse", "sheep", "squirrel"],
    multiple=True,
)

items_right_text

Determine text on the right side of each item.

type: List[str] or None

default value: None

items_links

Display help text with links for each item.

type: List[str] or None

default value: None

images = api.image.get_list(60402)

select_string = SelectString(
    values=[sly.fs.get_file_name(image.name) for image in images],
    items_links=[image.full_storage_url for image in images],
)

widget_id

ID of the widget.

type: Optional[str]

default value: None

Methods and attributes

Attributes and Methods
Description

get_value()

Return selected item value.

set(values: List[str], labels: Optional[List[str]] = None, right_text: Optional[List[str]] = None,)

Define string options to widget.

get_items()

Return list of items from widget.

@value_changed

Decorator function is handled when input value is changed.

Mini App Example

You can find this example in our Github repository:

Import libraries

import os

import supervisely as sly
from dotenv import load_dotenv
from supervisely.app.widgets import Card, Container, Select

Init API client

First, we load environment variables with credentials and init API for communicating with Supervisely Instance:

load_dotenv("local.env")
load_dotenv(os.path.expanduser("~/supervisely.env"))

api = sly.Api()

Get Dataset ID from environment variables

dataset_id = sly.env.dataset_id()

Get images infos from current dataset

images = api.image.get_list(dataset_id=dataset_id)

Create Image widget we will use in UI in this tutorial for demo

image = Image()

Initialize SelectString widget

select_string = SelectString(
    values=[img.name for img in images],
    items_links=[img.full_storage_url for img in images],
)

Create app layout

Prepare a layout for app using Card widget with the content parameter and place widget that we've just created in the Container widget.

card = Card(
    title="Select string",
    content=Container(
        [select_string, image],
        direction="horizontal",
        fractions=[1, 1],
    ),
)

layout = Container(widgets=[card])

Create app using layout

Create an app object with layout parameter.

app = sly.Application(layout=layout)

Add functions to control widget from code

@select_string.value_changed
def display_select_string(value):
    if value is not None:
        img = api.image.get_info_by_name(dataset_id, value)
        image.set(url=img.full_storage_url)

🔥
ui-widgets-demos/blob/master/selection/009_select_string/src/main.py