Supervisely
About SuperviselyEcosystemContact usSlack
  • 💻Supervisely Developer Portal
  • 🎉Getting Started
    • Installation
    • Basics of authentication
    • Intro to Python SDK
    • Environment variables
    • Supervisely annotation format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Objects
      • Tags
      • Image Annotation
      • Video Annotation
      • Point Clouds Annotation
      • Point Cloud Episode Annotation
      • Volumes Annotation
    • Python SDK tutorials
      • Images
        • Images
        • Image and object tags
        • Spatial labels on images
        • Keypoints (skeletons)
        • Multispectral images
        • Multiview images
        • Advanced: Optimized Import
        • Advanced: Export
      • Videos
        • Videos
        • Video and object tags
        • Spatial labels on videos
      • Point Clouds
        • Point Clouds (LiDAR)
        • Point Cloud Episodes and object tags
        • 3D point cloud object segmentation based on sensor fusion and 2D mask guidance
        • 3D segmentation masks projection on 2D photo context image
      • Volumes
        • Volumes (DICOM)
        • Spatial labels on volumes
      • Common
        • Iterate over a project
        • Iterate over a local project
        • Progress Bar tqdm
        • Cloning projects for development
    • Command Line Interface (CLI)
      • Enterprise CLI Tool
        • Instance administration
        • Workflow automation
      • Supervisely SDK CLI
    • Connect your computer
      • Linux
      • Windows WSL
      • Troubleshooting
  • 🔥App development
    • Basics
      • Create app from any py-script
      • Configuration file
        • config.json
        • Example 1. Headless
        • Example 2. App with GUI
        • v1 - Legacy
          • Example 1. v1 Modal Window
          • Example 2. v1 app with GUI
      • Add private app
      • Add public app
      • App Compatibility
    • Apps with GUI
      • Hello World!
      • App in the Image Labeling Tool
      • App in the Video Labeling Tool
      • In-browser app in the Labeling Tool
    • Custom import app
      • Overview
      • From template - simple
      • From scratch - simple
      • From scratch GUI - advanced
      • Finding directories with specific markers
    • Custom export app
      • Overview
      • From template - simple
      • From scratch - advanced
    • Neural Network integration
      • Overview
      • Serving App
        • Introduction
        • Instance segmentation
        • Object detection
        • Semantic segmentation
        • Pose estimation
        • Point tracking
        • Object tracking
        • Mask tracking
        • Image matting
        • How to customize model inference
        • Example: Custom model inference with probability maps
      • Serving App with GUI
        • Introduction
        • How to use default GUI template
        • Default GUI template customization
        • How to create custom user interface
      • Inference API
      • Training App
        • Overview
        • Tensorboard template
        • Object detection
      • High level scheme
      • Custom inference pipeline
      • Train and predict automation model pipeline
    • Advanced
      • Advanced debugging
      • How to make your own widget
      • Tutorial - App Engine v1
        • Chapter 1 Headless
          • Part 1 — Hello world! [From your Python script to Supervisely APP]
          • Part 2 — Errors handling [Catching all bugs]
          • Part 3 — Site Packages [Customize your app]
          • Part 4 — SDK Preview [Lemons counter app]
          • Part 5 — Integrate custom tracker into Videos Annotator tool [OpenCV Tracker]
        • Chapter 2 Modal Window
          • Part 1 — Modal window [What is it?]
          • Part 2 — States and Widgets [Customize modal window]
        • Chapter 3 UI
          • Part 1 — While True Script [It's all what you need]
          • Part 2 — UI Rendering [Simplest UI Application]
          • Part 3 — APP Handlers [Handle Events and Errors]
          • Part 4 — State and Data [Mutable Fields]
          • Part 5 — Styling your app [Customizing the UI]
        • Chapter 4 Additionals
          • Part 1 — Remote Developing with PyCharm [Docker SSH Server]
      • Custom Configuration
        • Fixing SSL Certificate Errors in Supervisely
        • Fixing 400 HTTP errors when using HTTP instead of HTTPS
      • Autostart
      • Coordinate System
      • MLOps Workflow integration
    • Widgets
      • Input
        • Input
        • InputNumber
        • InputTag
        • BindedInputNumber
        • DatePicker
        • DateTimePicker
        • ColorPicker
        • TimePicker
        • ClassesMapping
        • ClassesColorMapping
      • Controls
        • Button
        • Checkbox
        • RadioGroup
        • Switch
        • Slider
        • TrainValSplits
        • FileStorageUpload
        • Timeline
        • Pagination
      • Text Elements
        • Text
        • TextArea
        • Editor
        • Copy to Clipboard
        • Markdown
        • Tooltip
        • ElementTag
        • ElementTagsList
      • Media
        • Image
        • LabeledImage
        • GridGallery
        • Video
        • VideoPlayer
        • ImagePairSequence
        • Icons
        • ObjectClassView
        • ObjectClassesList
        • ImageSlider
        • Carousel
        • TagMetaView
        • TagMetasList
        • ImageAnnotationPreview
        • ClassesMappingPreview
        • ClassesListPreview
        • TagsListPreview
        • MembersListPreview
      • Selection
        • Select
        • SelectTeam
        • SelectWorkspace
        • SelectProject
        • SelectDataset
        • SelectItem
        • SelectTagMeta
        • SelectAppSession
        • SelectString
        • Transfer
        • DestinationProject
        • TeamFilesSelector
        • FileViewer
        • Dropdown
        • Cascader
        • ClassesListSelector
        • TagsListSelector
        • MembersListSelector
        • TreeSelect
        • SelectCudaDevice
      • Thumbnails
        • ProjectThumbnail
        • DatasetThumbnail
        • VideoThumbnail
        • FolderThumbnail
        • FileThumbnail
      • Status Elements
        • Progress
        • NotificationBox
        • DoneLabel
        • DialogMessage
        • TaskLogs
        • Badge
        • ModelInfo
        • Rate
        • CircleProgress
      • Layouts and Containers
        • Card
        • Container
        • Empty
        • Field
        • Flexbox
        • Grid
        • Menu
        • OneOf
        • Sidebar
        • Stepper
        • RadioTabs
        • Tabs
        • TabsDynamic
        • ReloadableArea
        • Collapse
        • Dialog
        • IFrame
      • Tables
        • Table
        • ClassicTable
        • RadioTable
        • ClassesTable
        • RandomSplitsTable
        • FastTable
      • Charts and Plots
        • LineChart
        • GridChart
        • HeatmapChart
        • ApexChart
        • ConfusionMatrix
        • LinePlot
        • GridPlot
        • ScatterChart
        • TreemapChart
        • PieChart
      • Compare Data
        • MatchDatasets
        • MatchTagMetas
        • MatchObjClasses
        • ClassBalance
        • CompareAnnotations
      • Widgets demos on github
  • 😎Advanced user guide
    • Objects binding
    • Automate with Python SDK & API
      • Start and stop app
      • User management
      • Labeling Jobs
  • 🖥️UI widgets
    • Element UI library
    • Supervisely UI widgets
    • Apexcharts - modern & interactive charts
    • Plotly graphing library
  • 📚API References
    • REST API Reference
    • Python SDK Reference
Powered by GitBook
On this page
  • Table of contents
  • Step 1 — Create a working directory
  • Step 2 — Create SSH key
  • Step 3 — Docker Image
  • Step 4 — Connect to container over SSH
  • Step 5 — Connect to container in PyCharm

Was this helpful?

Edit on GitHub
  1. App development
  2. Advanced
  3. Tutorial - App Engine v1
  4. Chapter 4 Additionals

Part 1 — Remote Developing with PyCharm [Docker SSH Server]

In this part, you will learn how to start developing using PyCharm and Docker.

PreviousChapter 4 AdditionalsNextCustom Configuration

Last updated 2 years ago

Was this helpful?

Table of contents

Step 1 — Create a working directory

The first thing you need to do is to create a directory in which you can store docker and ssh related files.

As an example, we will create a directory named remote_dev inside our project and move into that directory with the command:

mkdir remote_dev && cd remote_dev

Step 2 — Create SSH key

On your client system – the one you’re using to connect to the server – you need to create a pair of key codes.

To generate a pair of SSH key codes, enter the command:

ssh-keygen -t rsa -b 4096 -f my_key

Files my_key and my_key.pub will be created in the working directory.

Step 3 — Docker Image

Let's create all the files necessary for building the container.

1. Create Dockerfile

Let's create a simple image in which we will deploy the SSH server:

remote_dev/Dockerfile

ARG IMAGE
FROM $IMAGE

RUN apt-get update && apt-get install -y openssh-server
EXPOSE 22

RUN apt-get install -y sudo
RUN mkdir -p /run/sshd

ARG home=/root
RUN mkdir $home/.ssh
COPY my_key.pub $home/.ssh/authorized_keys
RUN chown root:root $home/.ssh/authorized_keys && \
    chmod 600 $home/.ssh/authorized_keys

COPY sshd_daemon.sh /sshd_daemon.sh
RUN chmod 755 /sshd_daemon.sh
CMD ["/sshd_daemon.sh"]
ENTRYPOINT ["sh", "-c", "/sshd_daemon.sh"]

Add a script to start the server:

remote_dev/sshd_daemon.sh

#!/bin/bash -l

echo $PATH
/usr/sbin/sshd -D

2. Create docker-compose

Since we need a GPU inside the container, we will take Image with pre-installed CUDA as a basis and set runtime to nvidia. For convenience, let's create a docker-compose file:

remote_dev/docker-compose.yml

version: "2.2"
services:
  remote_dev_service:
    shm_size: '8gb'
    runtime: nvidia
    build:
      context: .
      args:
        IMAGE: nvidia/cuda:11.1.1-devel-ubuntu18.04
    ports:
      - "1234:22"
    volumes:
      - "./data:/data"

3. Build container

curl https://get.docker.com | sh \
  && sudo systemctl --now enable docker
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
&& curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
&& curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt update
sudo apt install -y nvidia-docker2
sudo systemctl restart docker

The basic syntax used to build an image using a docker-compose is:

docker-compose up --build -d

Once the image is successfully built, you can verify whether it is on the list of containers with the command:

docker ps | grep remote_dev_service

Step 4 — Connect to container over SSH

Add server with the ports specified in docker-compose.yml

~/.ssh/config (example)

Host docker_remote_container
    HostName ip_of_your_docker_container
    User root
    Port 1234
    IdentityFile path_to_ssh_secret_key

To connect to container by SSH, use command:

ssh docker_remote_container

Step 5 — Connect to container in PyCharm

1. Create new project

2. Add new interpreter

  • Open Preferences -> Python Interpreter

  • Show all

  • Plus button

3. Configure interpreter

4. Run simple code

Don't forget to

🔥
install docker and nvidia-docker2
Create a working directory
Create SSH key
Docker Image
Connect to container over SSH
Connect to container in PyCharm
SSH Keys
Build docker image
PyCharm create new project
PyCharm create new project
PyCharm create new interpreter
PyCharm create new interpreter
PyCharm add python interpreter
PyCharm add python interpreter
PyCharm run code